Panasonic DMC-GH1K |
|
Type | Micro Four Thirds System |
---|---|
Sensor | 17.3 × 13 mm Live MOS (in 4:3 aspect ratio) |
Maximum resolution | 4000×3000 (14.0 megapixels multi-aspect; 12.1 mp effective); 4:3, 3:2, 16:9, 1:1 image format |
Lens | Micro Four Thirds System mount |
Flash | Built-in pop up, TTL, GN 10.5m equivalent (ISO100 · m) |
Shutter speed range | 60–1/4000 sec |
Exposure metering | Intelligent Multiple (Center weighted, average and spot) |
Exposure modes | Manual, Program, Automatic, Shutter Priority, Aperture Priority |
Focus modes | Automatic or Manual |
Viewfinder | EVF color display, 100% field of view, 0.7x (35mm equiv), 1.4x magnification, with 1,440K dots equivalent; LCD or articulated multi-angle 3.0 inch color LCD (460,000 dots equivalent) |
ASA/ISO range | ISO 100–3200 |
Flash bracketing | ±3.0 EV in ⅓ EV steps 3,5,7 frames* • 1/3 or 2/3 , +/−2.0 EV steps |
Custom WB | custom modes |
Storage | SD, SDHC |
Battery | Li-Ion 7.2 V, 1250 mAh |
Weight | body+battery 385 g; 14–140 mm zoom lens 480 g |
The Panasonic Lumix DMC-GH1 is a digital mirrorless interchangeable lens camera adhering to the Olympus and Panasonic developed Micro Four Thirds System (MFT) system design standard.[1] Panasonic classified the GH1 as a hybrid stills/video camera and the GH1 was introduced and marketed as a higher end camera than Panasonic's first MFT camera, the stills only, non-video capable Lumix DMC-G1.
The Panasonic Lumix DMC-GH1 was the second MFT camera introduced under the MFT design standard and the first MFT camera to include HD video recording capability. The GH1 was announced at the April 2009 Photo Marketing Association Annual Convention and Trade Show.
The camera was used to create the first DSLR feature film, "Rejouer" by Liam Finn.[2][3] As part of the marketing of this camera, Panasonic sponsored some professional filmmakers by allowing them to borrow the GH1 camera for their projects. One such GH1 model camera was used to film the pilot of the Swedish Horror Film Marianne .[4]
Contents |
When announced in March 2009,[5] the Panasonic Lumix DMC-GH1 was marketed as a "Creative HD Hybrid" camera, Panasonic's top-of-the-line Micro Four Thirds (MFT) system camera, and fully compliant with the MFT system standard. The resulting GH1 camera was a remarkably small and lightweight interchangeable lens camera when compared with traditional DSLRs, and instead of the traditional optical viewfinder, featured a high quaility electronic viewfinder. The GH1 was designed not only to take still photos, but perhaps even more importantly full HD video.
At first glance, the GH1 appeared to be just a video capable version of the world's first MFT system camera, the Panasonic Lumix DMC-G1 mirrorless interchangeable lens camera, first introduced in September 2008.[6] In fact, there were many distinguishing features that made the GH1 a unique, and perhaps even a ground breaking product. A new multi-aspect image ratio sensor, full AVCHD HD video capability, stereo sound recording, dual CPU image processing, and a super zoom lens optimized for video were all packaged into a small, lightweight DSLR form factor, but without the bulky mirror box and pentaprism.
Panasonic first pioneered the concept of a multi-aspect ratio image sensor in its compact camera, the 2008 Panasonic Lumix DMC-LX3 which used a much smaller 1/1.63" CCD technology sensor. ref>http://www.dpreview.com/products/panasonic/compacts/panasonic_dmclx3</ref>
Building on the multi-aspect ratio sensor concept pioneered in the Lumix DMC-LX3, the HD video capable GH1 was designed around a unique 14.0 megapixel (12.1 megapixel effective) Live MOS sensor.[7] The 14 megapixel multi-aspect image ratio GH1 sensor was designed to cover a slightly larger image circle than the native 4:3 image aspect ratio of its 12.1 megapixel cousin in the G1. This means that the GH1 14 megapixel sensor was capable of recording images in user selectable, native aspect ratios of 4:3, 3:2 and 16:9 with no cropping.
Most other digital cameras achieve different image aspect ratios by cropping the image from the native sensor. For example, most digital cameras with native 4:3 image aspect ratio sensors crop the native image on the top and the bottom to achieve either 3:2 or 16:9 images. On the other hand most DSLRs crop their 3:2 native image aspect ratio on the top and the bottom to achieve 16:9, or in some cases, crop the 3:2 native image on either side to achieve 4:3 images.
Effectively, the GH1 sensor is never used to its full capacity for 14 megapixels, but for any of the three formats, as much of the sensor is used as possible, and more importantly, each image has the same point of view. For example, when cropping images from a native format, such a 4:3, the point of view changes slightly, and a lot of pixels are lost, close to 25% when cropping a 16:9 image out of a 4:3 native format image. The multi-aspect ratio sensor cuts down on the loss of pixels so the pixel count for each aspect ratio is as close to 12 megapixels as possible. The multi-aspect sensor is also capable of producing 1:1 format images, but this is a cropped image from the 4:3 format.
The GH1 is one of a few cameras where HD video is recorded in a true 16:9 native image aspect ratio, and not a cropped portion of 4:3 or 3:2 HD video image. As of 2011, this multi-aspect ratio four thirds sensor design was unique to the Panasonic Lumix DMC-GH1 and its successor Panasonic Lumix DMC-GH2 hybrid still/video camera.[8] All other MFT system cameras, whether produced by Olympus or Panasonic use a single aspect image ratio sensor that crops the standard 4:3 image to 3:2, 16:9 or 1:1.[9]
While ground breaking as the first MFT system compliant camera, the Panasonic Lumix DMC-G1 was actually only partially compliant with the MFT standard, being a still camera, but not also a video camera. The GH1 was the first MFT camera marketed with full compliance to the MFT system design standard, which included HD video in both Motion JPEG(MPEG) and the newer, more efficient AVCHD format. The GH1 was designed from the ground up to be capable of AVCHD recording in true HD 1080p at 24 frame/s or 720p at 60 frame/s high-definition videos with continuous autofocus (AF) and Dolby Digital stereo sound recording. The GH1 was also the first consumer-priced interchangeable lens camera to also offer continuous autofocus capability while shooting HD video.
Notably, since the introduction of the GH1, every other MFT system compliant camera, whether made by Olympus or Panasonic, was capable of some type of AVCHD HD video. However, only the GH1 and the successor GH2 have provided the wide range of manual control over HD video recording, garnering the attention of amateur film makers world wide.
AVCHD is a file based (non-magnetic tape) format for recording and playback of HD video, jointly developed by Sony and Panasonic in 2006[10] for HD recording. All still or video/sound recording is to a SD or SDHC memory card. The user is also able to manually select shutter speed and aperture openings for more creative control over HD video recording.[11] Dolby Digital stereo sound is recorded via a stereo microphone, with a wind blocking feature to reduce background wind noise, built into the camera. More capable, optional external stereo microphones may also be fitted to the camera.[11]
While giving its best performance while recording in AVCHD, the GH1 can also record in more popular MPEG formats at a maximum resolution of 720p at 30 frame/s.
In the United States, the HD video recording length is limited to the capacity of the memory card (or the battery life, unless the AC power adapter is used). File sizes are no larger than 4 GB due to the SDHC file allocation table limits, but the video will be seamless between files. In Europe, however, the HD video recording length is limited to 30 minutes, due to EU regulatory and tax reasons.[12]
HD video is extremely data intensive, and Panasonic designed the GH1 around a dual CPU image processing system named the "Venus Engine HD".[11] This dual CPU greatly speeds up HD image processing and offers a number of other advantages, including improved image noise reduction performance, ability to display a live view direct from the sensor for either the fully articulated LCD display on the camera back or the high resolution electronic view finder, a very fast contrast detect auto focus system, and even the ability to output both images and sound via HDMI directly from the camera.[11]
At the time of introduction, the dual processor Venus Engine HD also allowed what was claimed to be the fastest contrast detect autofocus ability at the time, in addition to the implementation of a live view electronic viewfinder with DSLR like functionality, but without the penalty of a complex and bulky mirror box and pentaprism.[13] Several automatic focus modes are enhanced by the the dual processor feature, 23 area focus, user-selectable single point focusing, face detection focus, and automatic focus tracking.
In addition, the dual processor aids AVCHD video processing.
Traditional digital single-lens reflex cameras (DSLRs), typified by Canon EOS or Nikon FX or DX offerings use Phase Detect Auto Focus (PDAF) systems. PDAF are typically very fast and responsive systems. When used in Live view mode, especially for video, traditional DSLR's must rely on direct output from the main image sensor in order to autofocus. Relying strictly on the sensor output to autofocus is called Contrast Detect Auto Focus(CDAF). CDAF as implemented in traditional DSLR's is so slow as to be almost unusable for all but non-moving objects.[13]
The GH1 lacks a separate PDAF sensor and relies solely on CDAF to autofocus. Designed from ground up as a live view, CDAF camera, and not as an "add on" auto focus system for a primarily PDAF centric camera, the GH1 CDAF system breaks new ground. In combination with the dual processor Venus Engine HD, the GH1 CDAF system is easily as fast any traditional PDAF DSLR in the same price range.[13] In combination with other features, including a 23 area AF, user selectable single AF point anywhere in the frame, subject tracking AF and facial recognition AF, the GH1 offered the fastest and most comprehensive CDAF system available at the time in a consumer camera, on par in most performance areas with similar entry level DSLRs.[14]
When taking still photos, the GH1's Contrast Detect Auto Focus (CDAF) performance is comparable to the phase-detect autofocus systems in similarly priced entry to mid-level DSLR systems.[15]
HD video mode also uses this purpose-designed contrast-detect AF system, making the GH1 the only DSLR type camera at the time available to offer continuous autofocusing while shooting video.
Newly introduced for Panasonic MFT cameras was "Face Recognition", a facial recognition technology. The GH1 implementation of Face Recognition was an improvement of the concept first introduced in 2007 on the high end Panasonic Lumix DMC-L10 Four Thirds (not Micro Four Thirds) DSLR camera.[16][17] The GH1 allows the user to memorize two different faces for easier prioritization. For example, if a child's face is set into memory, and the photo has many faces in it, the GH1 will attempt to focus on the memorized face.
Face Recognition is different from the more common Face Detection technology used in a wide variety of cameras. When not using a memorized face, the camera will automatically prioritize focus on a face-like shape that the camera judges could be the main subject of the photo, attempting to further set the focus point at the eyes, in both still and video recording modes.
The GH1 uses a high resolution (1.44 million dots) electronic viewfinder (EVF),[18] a sophisticated projection system to achieve a clearer, smoother display than that of compact camera EVFs. The high resolution electronic viewfinder uses a technology known as LCOS, the same technology used in Panasonic's professional high end video cameras, and is supposed to be capable of much higher resolution than either LCD or plasma display technologies. As implemented in the GH1, the effect is 60 frame/s full time live view with no visible pixels for an image as large or larger, and brighter than competing optical viewfinders using a mirror box and pentaprism than most prosumer DSLR's.[19]
The EVF has a high enough resolution view that manual focusing is possible. Unlike traditional optical viewfinders which may use a ground glass focusing screen, the GH1 EVF takes a small portion of the scene and magnifies it 10X. This magnified portion may be moved around to any section of the live view. In manual focus mode, touching the lens focus ring will immediately turn on the magnification for manual focusing.
The MFT system standard specifies the lens mount flange to image sensor plane distance (flange focal distance) as 20mm, which is less than half that of typical DSLRs.[7] The effect is that the GH1 body is smaller in every critical dimension, especially depth, and is also lighter weight when compared to a typical DSLR. This 20mm flange to image sensor distance prohibits the practical implementation of the traditional mirror box and pentaprism optical viewfinder of the typical DSLR. The Panasonic electronic viewfinder is the solution to that packaging issue.
With an electronic viewfinder, in addition to providing a clear brighter than DSLR view, the user can also select between a variety of image aspect ratios (4:3; 3:2; 16:9 and 1:1) with a 100% image area through the lens in live view, something impossible with the traditional DSLR optical viewfinder.
The EVF allows additional flexibility is in information and situational awareness. The user may select various overlays so that more than 20 pieces of additional information are available at a glance to the user without removing the eye from the electronic viewfinder. For example, flash setting, optical image stabilization mode (there are 3), drive mode (single, burst, bracket, timer), image aspect ratio, image quality (RAW, JPEG or both), exposure indicator, ISO speed, shutter speed, aperture, record mode, white balance, composition grid lines and exposure histogram are just some of the available pieces of information in the EVF, all without ever having to move the eye from the viewfinder.
The EVF live view mode also allows a preview of the actual exposure in manual mode. The user can adjust shutter speed and aperture in manual mode and see the actual effect on the recorded exposure in the EVF. In addition to the usual depth of field preview, the GH1 allows a unique shutter speed effect preview, giving the user a fairly accurate preview of the finished image blurring when using a slow shutter speed.
In low light, the EVF has another advantage, in that it can brighten up the scene, allowing the user to see more detail than might typically be possible with a traditional optical viewfinder, the same way TV broadcasts of sporting events at twilight show much more color and detail than human eye can see.
The EVF has some disadvantages, however. In extremely low light at the sensor limits, image quality degrades into a grainy, and often lagging image. As a result, the GH1 is not strong in extremely low light situations. It should be noted that while the EVF performs well in low light, and can offer a better view than optical viewfinders, at extremely low light levels, optical viewfinders will have the edge. In burst mode, when the main image sensor must pull double duty recording the image and also feeding a live view to the EVF, image lag may become apparent, and it can be difficult to follow a fast moving object in the viewfinder. As a result, the GH1, as are all current EVF centric MFT cameras, is not a strong action sports camera. With the EVF being an electronic display, the GH1 uses considerably more battery power than the traditional DSLR, requiring more frequent battery changes.
Virtually all the functionality of the EVF is available on the articulated 3-inch (76 mm) LCD display panel on the back of the camera. The EVF also has an eye sensor, so that the EVF will turn on almost instantaneously, switching off the LCD panel when the eye is brought up the EVF.
Complimenting the GH1 is a purpose built video optimized "kit" super zoom lens, the HD video-optimized LUMIX G VARIO HD 14-140mm/F4.0-5.8 ASPH./MEGA O.I.S. lens. This optical image stabilized (Panasonic brand name "MEGA O.I.S") is video unique because it is near silent in operation, designed with a silent internal direct-drive linear motor for fast and continuous accurate contrast detect auto focusing, and a silent, step-less circular aperture diaphragm. The 14-140mm lens is a 35mm camera equivalent focal length of 28mm wide-angle to a 280mm telephoto with manual zoom control. While offering very good performance, especially for a 10x zoom lens, the 14-140mm lens has been criticized as being too expensive for a kit lens, costing as much as the camera body. When the successor GH2 camera was introduced, Panasonic offered a much less expensive (and less capable) 3x zoom 14-42mm kit lens, as well as the 14-140mm lens combination.
The camera was available in three colors — black (suffix K), red (R) and gold (N). In the United States, initial MSRP was USD 1500.00 (June 2009) for both the camera body and the 14-140mm kit zoom lens. Later on in the GH1 sales life cycle, the GH1 body only price was USD 700.00 and the 14-140mm zoom lens only price was USD 850.00
The GH1 camera's successor model is the Panasonic Lumix DMC-GH2 which was announced in September 2010.
Panasonic has released the following firmware updates[20]
Version | Release Date | Notes |
---|---|---|
1.3 |
2010-09-10 |
1. Improved operation menu for image stabilizer ([OFF] will be added under [STABILIZER] only when |
Non-Panasonic authored hacks have been developed and posted on the Internet, because, according to the hacker, Panasonic has been too conservative with the video side of the camera, and the GH1 is capable of much more. The unauthorized hacks enhance video capabilities of the GH1, enabling faster bit rates and more flexibility for the independent film maker. Reportedly, the hacks do not enhance the stills side of the camera, although the hacker has said there is always the possibility that a future hack could work on stills capability.[21] Internet chatter advances a theory is that Panasonic purposely dials back the capability of the GH1 for fear that the low cost consumer grade camera will begin to encroach on the capabilities of its more advanced video equipment costing hundreds or thousands more.
Panasonic has not endorsed the hacks, and certain firmware releases from Panasonic, notably 1.3, made the camera unhackable, that is, until about May 2011, when hackers developed a way to get around the Panasonic version 1.3x firmware.
The hacks are not for the faint of heart. An incorrect application of the hack can "brick" the camera, rendering the camera totally inoperative.
Version | Release Date | Notes |
---|---|---|
GH17 |
Ptool 3.56d Latest version
|
Recording File Format | Image Quality | Aspect Ratio | Image Size |
---|---|---|---|
RAW |
[4:3] 4,000 x 3,000 (L) [12M] |
Menu Designation | Aspect Ratio | Resolution | Frame Rate | Bit Rate |
---|---|---|---|---|
NTSC FHD | 16:9 | 1080i
1920 × 1080 |
60i
(sensor output is 24 fps) |
FHD: 17 Mbit/s |
NTSC HD | 16:9 | 720p
1280 × 720 |
60p (sensor output is 30 fps) |
SH: 17, H: 13, L: 9 Mbit/s |
PAL FHD | 16:9 | 1080i
1920 × 1080 |
50i
(sensor output is 25 fps) |
FHD: 17 Mbit/s |
PAL HD | 16:9 | 720p
1280 × 720 |
50p (sensor output is 25 fps) |
SH: 17, H: 13, L: 9 Mbit/s |
Menu Designation | Aspect Ratio | Resolution | Frame Rate | Bit Rate |
---|---|---|---|---|
HD | 16:9 | 1280 × 720 | 30 frame/s | ~8 MB/s |
WVGA | 16:9 | 848 × 480 | 30 frame/s | ~3.5 MB/s |
VGA | 4:3 | 640 × 480 | 30 frame/s | ~2.7 MB/s |
QVGA | 4:3 | 320 × 240 | 30 frame/s | ~0.7 MB/s |
Item | Model | Sensor | Electronic View Finder (EVF) | Announced |
---|---|---|---|---|
1 | Panasonic Lumix DMC-G1 | 4:3 / 13.1 mp (12.1 mp effective) | EVF; 1.4x magnification; 1.44M dots | 2008, October [6] |
2 | Panasonic Lumix DMC-GH1 | 4:3; 3:2; 16:9 (multi-aspect); 14.0 mp (12.1 mp effect) | EVF; 1.4x mag; 1.44M dots | 2009, April [22] |
3 | Olympus PEN E-P1 | 4:3 / 13.1 mp (12.3 mp effect) | optional hotshoe optical VF-1; 65 degree AOV | 2009, July [23] |
4 | Panasonic Lumix DMC-GF1 | 4:3 / 13.1 mp (12.1 mp effect) | opt hotshoe EVF LVF1; 1.04x mag; 202K dots | 2009, September [24] |
5 | Olympus PEN E-P2 | 4:3 / 13.1 mp (12.3 mp effect) | opt hotshoe EVF VF-2; 1.15x mag; 1.44M dots | 2009, November [25] |
6 | Olympus PEN E-PL1 | 4:3 / 13.1 mp (12.3 mp effect) | opt hotshoe EVF VF-2; 1.15x mag; 1.44M dots | 2010, February [26] |
7 | Panasonic Lumix DMC-G10 | 4:3 / 13.1 mp (12.1 mp effect) | EVF; 1.04x magnification; 202K dots | 2010, March [27] |
8 | Panasonic Lumix DMC-G2 | 4:3 / 13.1 mp (12.1 mp effect) | EVF; 1.4x mag; 1.44M dots | 2010, March [28] |
9 | Panasonic Lumix DMC-GH2 | 4:3; 3:2; 16:9 (multi-aspect); 18.3 mp (16.0 mp effect) | EVF; 1.42x mag; 1.53M dots | 2010, September [29] |
10 | Panasonic Lumix DMC-GF2 | 4:3 / 13.1 mp (12.1 mp effect) | opt hotshoe EVF; 1.04x mag; 202K dots | 2010, November [30] |
11 | Olympus PEN E-PL1s | 4:3 / 13.1 mp (12.3 mp effect) | opt hotshoe EVF VF-2; 1.15x mag; 1.44M dots | 2010, November [31] |
12 | Olympus PEN E-PL2 | 4:3 / 13.1 mp (12.3 mp effect) | opt hotshoe EVF VF-2; 1.15x mag; 1.44M dots | 2011, January [32] |
13 | Panasonic Lumix DMC-G3 | 4:3 / 16.6 mp (15.8 mp effect) | EVF; 1.4x mag; 1.44M dots | 2011, May [33] |
14 | Panasonic Lumix DMC-GF3 | 4:3 / 13.1 mp (12.1 mp effect) | N/A | 2011, June [34] |
15 | Olympus PEN E-P3 | 4:3 / 13.1 mp (12.3 mp effect) | opt hotshoe EVF VF-2; 1.15x mag; 1.44M dots | 2011, June[35] |
16 | Olympus PEN E-PL3 | 4:3 / 13.1 mp (12.3 mp effect) | opt hotshoe EVF VF-2; 1.15x mag; 1.44M dots | 2011, June[36] |
17 | Olympus PEN E-PM1 | 4:3 / 13.1 mp (12.3 mp effect) | opt hotshoe EVF VF-2; 1.15x mag; 1.44M dots | 2011, June[37] |
18 | Panasonic Lumix DMC-GX1 | 4:3 / 16.6 mp (16.0 mp effect) | opt hotshoe EVF LVF2; 1.4x mag; 1.44M dots | 2011, November[38] |
Media related to [//commons.wikimedia.org/wiki/Category:Panasonic_Lumix_DMC-GH1 Panasonic Lumix DMC-GH1] at Wikimedia Commons
Preceded by Panasonic Lumix DMC-G1 |
Panasonic Micro Four Thirds System cameras November 2008–present |
Succeeded by Panasonic Lumix DMC-GH2 |